3.417 \(\int \frac{(a+b x^2)^{9/2}}{x} \, dx\)

Optimal. Leaf size=108 \[ a^4 \sqrt{a+b x^2}+\frac{1}{3} a^3 \left (a+b x^2\right )^{3/2}+\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+a^{9/2} \left (-\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )\right )+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2} \]

[Out]

a^4*Sqrt[a + b*x^2] + (a^3*(a + b*x^2)^(3/2))/3 + (a^2*(a + b*x^2)^(5/2))/5 + (a*(a + b*x^2)^(7/2))/7 + (a + b
*x^2)^(9/2)/9 - a^(9/2)*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]

________________________________________________________________________________________

Rubi [A]  time = 0.0702031, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 50, 63, 208} \[ a^4 \sqrt{a+b x^2}+\frac{1}{3} a^3 \left (a+b x^2\right )^{3/2}+\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+a^{9/2} \left (-\tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )\right )+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(9/2)/x,x]

[Out]

a^4*Sqrt[a + b*x^2] + (a^3*(a + b*x^2)^(3/2))/3 + (a^2*(a + b*x^2)^(5/2))/5 + (a*(a + b*x^2)^(7/2))/7 + (a + b
*x^2)^(9/2)/9 - a^(9/2)*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{9/2}}{x} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(a+b x)^{9/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{9} \left (a+b x^2\right )^{9/2}+\frac{1}{2} a \operatorname{Subst}\left (\int \frac{(a+b x)^{7/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2}+\frac{1}{2} a^2 \operatorname{Subst}\left (\int \frac{(a+b x)^{5/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2}+\frac{1}{2} a^3 \operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{3} a^3 \left (a+b x^2\right )^{3/2}+\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2}+\frac{1}{2} a^4 \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x} \, dx,x,x^2\right )\\ &=a^4 \sqrt{a+b x^2}+\frac{1}{3} a^3 \left (a+b x^2\right )^{3/2}+\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2}+\frac{1}{2} a^5 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,x^2\right )\\ &=a^4 \sqrt{a+b x^2}+\frac{1}{3} a^3 \left (a+b x^2\right )^{3/2}+\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2}+\frac{a^5 \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x^2}\right )}{b}\\ &=a^4 \sqrt{a+b x^2}+\frac{1}{3} a^3 \left (a+b x^2\right )^{3/2}+\frac{1}{5} a^2 \left (a+b x^2\right )^{5/2}+\frac{1}{7} a \left (a+b x^2\right )^{7/2}+\frac{1}{9} \left (a+b x^2\right )^{9/2}-a^{9/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0393282, size = 84, normalized size = 0.78 \[ \frac{1}{315} \sqrt{a+b x^2} \left (408 a^2 b^2 x^4+506 a^3 b x^2+563 a^4+185 a b^3 x^6+35 b^4 x^8\right )-a^{9/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(9/2)/x,x]

[Out]

(Sqrt[a + b*x^2]*(563*a^4 + 506*a^3*b*x^2 + 408*a^2*b^2*x^4 + 185*a*b^3*x^6 + 35*b^4*x^8))/315 - a^(9/2)*ArcTa
nh[Sqrt[a + b*x^2]/Sqrt[a]]

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 94, normalized size = 0.9 \begin{align*}{\frac{1}{9} \left ( b{x}^{2}+a \right ) ^{{\frac{9}{2}}}}+{\frac{a}{7} \left ( b{x}^{2}+a \right ) ^{{\frac{7}{2}}}}+{\frac{{a}^{2}}{5} \left ( b{x}^{2}+a \right ) ^{{\frac{5}{2}}}}+{\frac{{a}^{3}}{3} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}-{a}^{{\frac{9}{2}}}\ln \left ({\frac{1}{x} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{2}+a} \right ) } \right ) +{a}^{4}\sqrt{b{x}^{2}+a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(9/2)/x,x)

[Out]

1/9*(b*x^2+a)^(9/2)+1/7*a*(b*x^2+a)^(7/2)+1/5*a^2*(b*x^2+a)^(5/2)+1/3*a^3*(b*x^2+a)^(3/2)-a^(9/2)*ln((2*a+2*a^
(1/2)*(b*x^2+a)^(1/2))/x)+a^4*(b*x^2+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(9/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.69137, size = 419, normalized size = 3.88 \begin{align*} \left [\frac{1}{2} \, a^{\frac{9}{2}} \log \left (-\frac{b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{a} + 2 \, a}{x^{2}}\right ) + \frac{1}{315} \,{\left (35 \, b^{4} x^{8} + 185 \, a b^{3} x^{6} + 408 \, a^{2} b^{2} x^{4} + 506 \, a^{3} b x^{2} + 563 \, a^{4}\right )} \sqrt{b x^{2} + a}, \sqrt{-a} a^{4} \arctan \left (\frac{\sqrt{-a}}{\sqrt{b x^{2} + a}}\right ) + \frac{1}{315} \,{\left (35 \, b^{4} x^{8} + 185 \, a b^{3} x^{6} + 408 \, a^{2} b^{2} x^{4} + 506 \, a^{3} b x^{2} + 563 \, a^{4}\right )} \sqrt{b x^{2} + a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(9/2)/x,x, algorithm="fricas")

[Out]

[1/2*a^(9/2)*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) + 1/315*(35*b^4*x^8 + 185*a*b^3*x^6 + 408*a^2
*b^2*x^4 + 506*a^3*b*x^2 + 563*a^4)*sqrt(b*x^2 + a), sqrt(-a)*a^4*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + 1/315*(35
*b^4*x^8 + 185*a*b^3*x^6 + 408*a^2*b^2*x^4 + 506*a^3*b*x^2 + 563*a^4)*sqrt(b*x^2 + a)]

________________________________________________________________________________________

Sympy [A]  time = 9.37214, size = 160, normalized size = 1.48 \begin{align*} \frac{563 a^{\frac{9}{2}} \sqrt{1 + \frac{b x^{2}}{a}}}{315} + \frac{a^{\frac{9}{2}} \log{\left (\frac{b x^{2}}{a} \right )}}{2} - a^{\frac{9}{2}} \log{\left (\sqrt{1 + \frac{b x^{2}}{a}} + 1 \right )} + \frac{506 a^{\frac{7}{2}} b x^{2} \sqrt{1 + \frac{b x^{2}}{a}}}{315} + \frac{136 a^{\frac{5}{2}} b^{2} x^{4} \sqrt{1 + \frac{b x^{2}}{a}}}{105} + \frac{37 a^{\frac{3}{2}} b^{3} x^{6} \sqrt{1 + \frac{b x^{2}}{a}}}{63} + \frac{\sqrt{a} b^{4} x^{8} \sqrt{1 + \frac{b x^{2}}{a}}}{9} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(9/2)/x,x)

[Out]

563*a**(9/2)*sqrt(1 + b*x**2/a)/315 + a**(9/2)*log(b*x**2/a)/2 - a**(9/2)*log(sqrt(1 + b*x**2/a) + 1) + 506*a*
*(7/2)*b*x**2*sqrt(1 + b*x**2/a)/315 + 136*a**(5/2)*b**2*x**4*sqrt(1 + b*x**2/a)/105 + 37*a**(3/2)*b**3*x**6*s
qrt(1 + b*x**2/a)/63 + sqrt(a)*b**4*x**8*sqrt(1 + b*x**2/a)/9

________________________________________________________________________________________

Giac [A]  time = 1.58725, size = 122, normalized size = 1.13 \begin{align*} \frac{a^{5} \arctan \left (\frac{\sqrt{b x^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} + \frac{1}{9} \,{\left (b x^{2} + a\right )}^{\frac{9}{2}} + \frac{1}{7} \,{\left (b x^{2} + a\right )}^{\frac{7}{2}} a + \frac{1}{5} \,{\left (b x^{2} + a\right )}^{\frac{5}{2}} a^{2} + \frac{1}{3} \,{\left (b x^{2} + a\right )}^{\frac{3}{2}} a^{3} + \sqrt{b x^{2} + a} a^{4} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(9/2)/x,x, algorithm="giac")

[Out]

a^5*arctan(sqrt(b*x^2 + a)/sqrt(-a))/sqrt(-a) + 1/9*(b*x^2 + a)^(9/2) + 1/7*(b*x^2 + a)^(7/2)*a + 1/5*(b*x^2 +
 a)^(5/2)*a^2 + 1/3*(b*x^2 + a)^(3/2)*a^3 + sqrt(b*x^2 + a)*a^4